Test inline:
Test inline:
Test multi-line:
Building a Python Interpreter from Scratch
Creating a Python interpreter from scratch is a fascinating project that introduces you to the inner workings of interpreters, compilers, and language design. Though creating a full-fledged interpreter for Python’s entire language is a significant undertaking, this guide will outline the foundational concepts and steps to help you get started with a minimalist Python interpreter.
Prerequisites
Before diving into this project, it’s helpful to have a basic understanding of:
- Programming Language Theory: Familiarity with concepts like syntax, semantics, parsing, and execution.
- Python: Some understanding of Python will help, as we’ll be interpreting a simplified version of Python itself.
- Data Structures: Parsing expressions requires working with data structures like stacks, queues, and trees.
Step 1: Define the Interpreter’s Scope
To avoid overwhelming complexity, define a narrow scope:
- Support basic arithmetic expressions (
+, -, *, /
). - Handle simple variable assignments.
- Ignore advanced features like classes, functions, and imports.
This will allow you to focus on core interpreter concepts without getting bogged down by Python’s full feature set.
Step 2: Tokenization (Lexical Analysis)
Tokenization is the process of breaking down the input text into meaningful chunks, called tokens. Each token represents a part of the input, such as a number, operator, or identifier.
Here’s a basic tokenizer in Python:
import re
def tokenize(code):
token_spec = [
('NUMBER', r'\d+(\.\d*)?'), # Integer or decimal number
('ID', r'[A-Za-z_]\w*'), # Identifiers
('OP', r'[+\-*/]'), # Arithmetic operators
('ASSIGN', r'='), # Assignment operator
('WHITESPACE', r'\s+'), # Whitespace
]
tok_regex = '|'.join(f'(?P<{pair[0]}>{pair[1]})' for pair in token_spec)
for match in re.finditer(tok_regex, code):
kind = match.lastgroup
value = match.group()
if kind != 'WHITESPACE': # Skip whitespace tokens
yield kind, value
Example:
list(tokenize("x = 10 + 2 * 3"))
# Output: [('ID', 'x'), ('ASSIGN', '='), ('NUMBER', '10'), ('OP', '+'), ('NUMBER', '2'), ('OP', '*'), ('NUMBER', '3')]
Step 3: Parsing (Syntax Analysis)
Parsing turns tokens into a structure the interpreter can understand. A common choice is to use Abstract Syntax Trees (ASTs), where each node represents an operation or value in the code.
For a simple expression like x = 10 + 2 * 3
, the AST might look like:
=
/ \
x +
/ \
10 *
/ \
2 3
To build an AST, use the Shunting Yard algorithm for parsing expressions. Here’s a simple recursive parser for arithmetic expressions:
class ASTNode:
def __init__(self, type, value=None, left=None, right=None):
self.type = type
self.value = value
self.left = left
self.right = right
def parse_expression(tokens):
tokens = list(tokens)
def parse_term():
token = tokens.pop(0)
if token[0] == 'NUMBER':
return ASTNode('NUMBER', value=float(token[1]))
elif token[0] == 'ID':
return ASTNode('ID', value=token[1])
def parse():
node = parse_term()
while tokens and tokens[0][0] == 'OP':
op = tokens.pop(0)
right = parse_term()
node = ASTNode('OP', value=op[1], left=node, right=right)
return node
return parse()
Step 4: Interpreting the AST (Execution)
The interpreter traverses the AST and evaluates it. Each node type (e.g., assignment, operation, number) has its own evaluation logic.
Here’s a simple interpreter function:
def evaluate(node, context={}):
if node.type == 'NUMBER':
return node.value
elif node.type == 'ID':
return context.get(node.value, 0)
elif node.type == 'ASSIGN':
context[node.left.value] = evaluate(node.right, context)
return context[node.left.value]
elif node.type == 'OP':
left_val = evaluate(node.left, context)
right_val = evaluate(node.right, context)
if node.value == '+':
return left_val + right_val
elif node.value == '-':
return left_val - right_val
elif node.value == '*':
return left_val * right_val
elif node.value == '/':
return left_val / right_val
return None
Step 5: Putting It All Together
Here’s how you can put everything together to interpret a line of code:
def interpret(code, context={}):
tokens = tokenize(code)
ast = parse_expression(tokens)
return evaluate(ast, context)
Example:
context = {}
interpret("x = 10 + 2 * 3", context)
print(context) # Output: {'x': 16.0}
Conclusion
Building a Python interpreter from scratch is a rewarding project. By understanding tokenization, parsing, and evaluation, you gain a deeper appreciation of how programming languages work under the hood. This simple interpreter serves as a foundation; you can extend it with more complex features like functions, control flow, and error handling.
Further Reading
- “Crafting Interpreters” by Robert Nystrom: A comprehensive guide to building interpreters.
- Python’s AST Module: Explore Python’s own AST capabilities.
- Compiler and Language Theory: Books like “Compilers: Principles, Techniques, and Tools” (Dragon Book) provide deeper insights into language design.